Abaqus/Explicit

Section  1.3.9

Shear flexible beams and shells: I

Section  1.3.10

Shear flexible beams and shells: II

Section  1.3.11

Initial curvature of beams and shells

Section  1.3.12

Normal definitions of beams and shells

Section  1.3.15

Composite shell sections

Section  1.3.17

Thermal stress in a cylindrical shell

Section  1.3.23

Beam added inertia

Section  1.3.24

Beam fluid inertia

Section  1.3.25

Beam with end moment

Section  1.3.26

Flexure of a deep beam

Section  1.3.27

Simple tests of beam kinematics

Section  1.3.28

Tensile test

Section  1.3.29

Simple shear

Section  1.3.42

Temperature-dependent film condition

Section  1.3.46

Cohesive elements

Section  1.4.3

Pipe stress/displacement elements

Section  1.4.5

Cohesive element load verification

Section  1.4.9

Coupled temperature-displacement elements

Section  1.4.16

Abaqus/Explicit element loading verification

Section  1.4.17

Incident wave loading

Section  1.4.18

Distributed traction and edge loads

Section  1.5.1

Membrane patch test

Section  1.5.2

Patch test for three-dimensional solid elements

Section  1.5.4

Patch test for axisymmetric elements

Section  1.5.7

Patch test for beam elements

Section  1.5.8

Patch test for heat transfer elements

Section  1.5.10

Patch test for acoustic elements

Section  1.6.2

Small-sliding contact between coupled temperature-displacement surfaces

Section  1.6.6

Finite-sliding contact between a deformable body and a rigid surface

Section  1.6.8

Finite-sliding contact between coupled temperature-displacement elements

Section  1.6.11

Rolling of steel plate

Section  1.6.12

Beam impact on cylinder

Section  1.6.17

Contact with initial overclosure of curved surfaces

Section  1.6.18

Small-sliding contact with specified clearance or overclosure values

Section  1.6.20

Self-contact of finite-sliding deformable surfaces

Section  1.6.24

Contact searching for analytical rigid surfaces

Section  1.6.25

Multiple surface contact with penalty method

Section  1.7.1

Thermal surface interaction

Section  1.7.5

Friction models in Abaqus/Explicit

Section  1.7.6

Cohesive surface interaction

Section  1.8.1

Rigid body mass properties

Section  1.8.2

Tie and pin node sets

Section  1.8.3

Rigid body as an MPC

Section  1.8.4

Rigid body constraint

Section  1.8.5

Including deformable element types in a rigid body

Section  1.9.1

Damped free vibration with initial conditions

Section  1.9.2

Sinusoidal excitation of a damped spring-mass system

Section  1.9.3

Multiple instances of connector elements

Section  1.9.4

Individual connector option tests

Section  1.9.6

Tests for special-purpose connectors

Section  1.11.2

Rebar in Abaqus/Explicit

Section  1.11.7

Rigid bodies with temperature DOFs, heat capacitance, and nodal-based thermal loads

Section  1.11.8

Analysis of unbounded acoustic regions

Section  1.11.9

Nonstructural mass verification

Section  1.11.10

Mass adjust verification

Section  2.2.1

Elastic materials

Section  2.2.2

Viscoelastic materials

Section  2.2.3

Mullins effect and permanent set

Section  2.2.5

Temperature-dependent elastic materials

Section  2.2.6

Field-variable-dependent elastic materials

Section  2.2.7

Large-strain viscoelasticity with hyperelasticity

Section  2.2.8

Nonlinear large-strain viscoelasticity with hyperelasticity

Section  2.2.10

Rate-independent plasticity

Section  2.2.12

Rate-dependent plasticity in Abaqus/Explicit

Section  2.2.13

Annealing temperature

Section  2.2.14

Temperature-dependent inelastic materials

Section  2.2.15

Field-variable-dependent inelastic materials

Section  2.2.16

Johnson-Cook plasticity

Section  2.2.17

Porous metal plasticity

Section  2.2.18

Drucker-Prager plasticity

Section  2.2.19

Drucker-Prager/Cap plasticity model

Section  2.2.20

Equation of state material

Section  2.2.21

Progressive damage and failure of ductile metals

Section  2.2.22

Progressive damage and failure in fiber-reinforced materials

Section  2.2.25

Concrete damaged plasticity

Section  2.2.27

Brittle cracking constitutive model

Section  2.2.28

Cracking model: tension shear test

Section  2.2.31

Material damping in Abaqus/Explicit

Section  2.2.32

Mass proportional damping in Abaqus/Explicit

Section  2.2.33

Thermal expansion test

Section  2.3.1

Thermal properties

Section  3.2.5

Single degree of freedom spring-mass systems

Section  3.2.6

Linear kinematics element tests

Section  3.2.7

Mass scaling

Section  3.7.2

Two-dimensional continuum stress/displacement submodeling

Section  3.7.3

Three-dimensional continuum stress/displacement submodeling

Section  3.7.5

Axisymmetric continuum stress/displacement submodeling

Section  3.7.7

Membrane submodeling

Section  3.7.8

Shell submodeling

Section  3.7.10

Heat transfer submodeling

Section  3.7.11

Coupled temperature-displacement submodeling

Section  3.7.14

Acoustic submodeling

Section  3.7.15

Shell-to-solid submodeling

Section  3.7.17

Miscellaneous submodeling tests

Section  3.8.1

Volumetric drag

Section  3.8.2

Impedance boundary conditions

Section  3.8.4

Transient acoustic wave propagation

Section  3.8.6

CONWEP blast loading pressures

Section  3.8.7

Blast loading of a circular plate using the CONWEP model

Section  3.11.1

Aqua load cases

Section  3.13.1

Transferring results between Abaqus/Explicit and Abaqus/Standard

Section  3.13.3

Transferring results from one Abaqus/Explicit analysis to another Abaqus/Explicit analysis

Section  3.13.4

Transferring results with general beam sections

Section  3.13.5

Transferring results with general shell sections

Section  3.13.6

Adding and removing elements during results transfer

Section  3.13.7

Transferring rigid elements

Section  3.13.8

Transferring mass and rotary inertia elements

Section  3.13.9

Transferring connector elements into Abaqus/Explicit

Section  3.13.10

Transferring hourglass forces

Section  3.13.11

Changing the material definition during import

Section  3.13.12

Transferring results with plasticity

Section  3.13.13

Transferring results with damage

Section  3.13.14

Transferring results with hyperelasticity

Section  3.13.15

Transferring results with viscoelasticity

Section  3.13.16

Transferring results for a hyperelastic sheet with a circular hole

Section  3.13.17

Transferring results with hyperfoam

Section  3.13.18

Transferring results with orientation

Section  3.13.19

Miscellaneous results transfer tests

Section  3.13.20

Transferring results with parallel rheological framework

Section  3.13.21

Transferring results of an analysis model multiple times

Section  3.16.3

Using generated cross-section properties in a beam analysis

Section  3.18.1

CEL analysis of a rotating water disk

Section  3.19.1

Smoothed particle hydrodynamic analysis

Section  3.20.2

Abaqus/Standard to Abaqus/Explicit co-simulation

Section  3.24.1

Media transport

Section  3.25.1

Discrete element method analysis

Section  3.25.2

Particle generator

Section  4.1.13

UANISOHYPER_INV and VUANISOHYPER_INV

Section  4.1.28

VDISP

Section  4.1.29

VDLOAD: nonuniform loads

Section  4.1.30

VFRIC, VFRIC_COEF, and VFRICTION

Section  4.1.31

VUAMP

Section  4.1.32

VUCHARLENGTH

Section  4.1.33

VUEL

Section  4.1.34

VUFIELD

Section  4.1.35

VUHARD

Section  4.1.36

VUINTER

Section  4.1.37

VUINTERACTION

Section  4.1.38

VUMAT: rotating cylinder

Section  4.1.39

VUSDFLD

Section  4.1.40

VUVISCOSITY

Section  4.1.41

VWAVE

Section  5.1.2

Adjusting nodal coordinates

Section  5.1.3

Amplitude

Section  5.1.4

Spatially varying element properties

Section  5.1.7

Coupling constraints

Section  5.1.8

Define a part instance that will be used for display only

Section  5.1.9

Embedded element technique

Section  5.1.11

Specifying geometric imperfection and parameter shape variation

Section  5.1.13

Defining the cutting surface

Section  5.1.16

Mesh-independent spot welds

Section  5.1.17

Multi-point constraints

Section  5.1.22

Shell-to-solid coupling constraints

Section  5.1.24

Surface-based fluid cavities

Section  5.1.25

Modified contact pressure-overclosure relationship

Section  5.1.26

Defining temperature, field variable, and pressure stress values

Section  5.1.27

Surface-based tie constraint

Section  5.2.3

Integrated output variables